Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(11): 16571-16582, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38321276

RESUMO

Parabens (p-hydroxybenzoic acid esters) commonly used preservatives (in cosmetics, pharmaceuticals, and foods) can pose potential effects on environmental health. In this study, seven parabens were quantified in marine fish samples using an ultra-high performance liquid chromatography triple quadrupole mass spectrometer (UHPLC-MS/MS) system. Parabens in the fish samples were extracted and purified by a rapid, simple, and effective procedure comprising sample homogenization with solvent, solid-phase extraction clean-up, and solvent evaporation. Results demonstrated that the recoveries of seven compounds (with relative standard deviation < 15%) were 88-103% in matrix-spike samples and 86-105% in surrogate standards. The method detection limits and method quantification limits of seven parabens were 0.015-0.030 and 0.045-0.090 ng/g-ww (wet weight), respectively. The optimized method was applied to measure the concentration of parabens in the 37 marine fish samples collected from Vietnam coastal waters. The concentration ranges of seven parabens found in round scad and greater lizardfish samples were 6.82-25.3 ng/g ww and 6.21-17.2 ng/g-ww, respectively. Among parabens, methylparaben accounted for the highest contribution in both fish species (43.2 and 44.9%, respectively). Based on the measured concentrations of parabens in marine fish samples, the estimated daily intake was calculated for children and adults with the corresponding values of 0.0477 µg/kg/day and 0.0119 µg/kg/day, respectively. However, the presence of parabens in Vietnamese marine fish may not pose a significant risk to human health.


Assuntos
Parabenos , Espectrometria de Massas em Tandem , Adulto , Criança , Animais , Humanos , Parabenos/análise , Peixes , Conservantes Farmacêuticos , Cromatografia Líquida de Alta Pressão/métodos , Solventes
2.
Water Environ Res ; 96(1): e10966, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38226502

RESUMO

Commercial micro-mesoporous carbonaceous material (MCM; 56.8% mesopores) was applied for investigating the removal phenomenon of naproxen drug in aqueous solutions through batch adsorption experiments. Results demonstrated that the adsorption capacity of MCM to naproxen was slightly affected by different pHeq (2.0-11) and ionic strength (0-1 M NaCl). Adsorption kinetics, isotherms, thermodynamics, and mechanisms were evaluated at pH 7.0. Adsorption kinetics indicated the rate constants for adsorption (0.2 × 10-3  L/(mg × min) and desorption (0.076/min) and the adsorption equilibrium constant (2.6 × 10-3  L/mg). Adsorption isotherm showed that MCM exhibited a high-affinity adsorption capacity to naproxen (even at low concentrations) and its Langmuir maximum adsorption capacity (Qmax ) was 252.7 mg/g at 25°C. Adsorption thermodynamics proved that the adsorption process was endothermic and physisorption (ΔH° = 9.66 kJ/mol). The analysis result of pore size distribution demonstrated that the internal pore structure of MCM was appropriate for adsorbing naproxen molecules. Pore-filing mechanism (pore diffusion phenomenon) was confirmed by a considerable decrease in BET-surface area (585 m2 /g) and total pore volume (0.417 cm3 /g) of MCM after adsorbing naproxen (~1000 mg/L and pH 7.0) at 5 min (341 and 0.256), 60 min (191 and 0.205), 120 min (183 and 0.193), 360 min (144 and 0.175), and 24 h (71.6 m2 /g and 0.123 cm3 /g, respectively). The pore diffusion occurred rapidly (even at the initial adsorption period of 5 min). The FTIR technique was applied to identify the existence of C-H···π and n-π interaction. π-π interaction (evaluated through ID /IG ratio and C=C band) played a minor contribution in adsorption mechanisms. The ID /IG ratio (determined by the Raman technique) of MCM before adsorption (1.195) was similar to that after adsorption (1.190), and the wavenumber (C=C band; its FTIR spectrum) slightly shifted from 1638 to 1634 cm-1 after adsorption. A decrease in the Qmax value of MCM from 249 to 217 (H2 O2 -oxidized MCM) or to 224 mg/g (HNO3 -oxidized MCM) confirmed the presence of π-π interaction. Electrostatic attraction was a minor contribution. MCM can serve as a promising material for removing naproxen from water environment through a pore-filling mechanism. PRACTITIONER POINTS: Pore-filling mechanism was proposed by comparing textural properties of MCM before and after adsorbing naproxen. C-H···π and n-π interactions were identified via FTIR technique. π-π interaction was observed by FTIR and Raman techniques. Oxidation of MCM with HNO3 or H2 O2 was a helpful method to explore π-π interaction. Electrostatic attraction was explained through studies: effects of pH and NaCl along with desorption.


Assuntos
Poluentes Químicos da Água , Água , Água/química , Naproxeno , Cloreto de Sódio , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio , Termodinâmica , Adsorção , Cinética
3.
Bioresour Technol ; 383: 129225, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37244306

RESUMO

This work aimed to develop innovative material by combining properties of magnetic-biochar (derived from peanut shells) and hydrogel bead (MBA-bead) and apply it for adsorbing Cu2+ in water. MBA-bead was synthesized by physical cross-linking methods. Results indicated that MBA-bead contained ∼90% water. The diameter of each spherical MBA-bead was approximately 3 mm (wet form) and 2 mm in (dried form). Its specific surface area (262.4 m2/g) and total pore volume (0.751 cm3/g) were obtained from nitrogen adsorption at 77 K. X-ray diffraction data confirmed Fe3O4 presented in magnetic-biochar and MBA-bead. Its Langmuir maximum adsorption capacity for Cu2+ was 234.1 mg/g (30 °C and pHeq 5.0). The change in standard enthalpy (ΔH°) of the adsorption was 44.30 kJ/mol (dominant physical adsorption). Primary adsorption mechanisms were complexation, ion exchange, and Van der Waals force. Laden MBA-bead can be reused several cycles after desorbing with NaOH or HCl. The cost was estimated for producing PS-biochar (0.091 US$/kg), magnetic-biochar (0.303-0.892 US$/kg), and MBA-bead (1.369-3.865 US$/kg). MBA-bead can serve as an excellent adsorbent for removing Cu2+ ions from water.


Assuntos
Cobre , Poluentes Químicos da Água , Alginatos , Água , Carvão Vegetal , Adsorção , Íons , Fenômenos Magnéticos , Cinética
4.
J Environ Manage ; 325(Pt A): 116475, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36272293

RESUMO

Two flaws in concepts were identified and discussed in the paper ("Removal of Pb(II) from contaminated waters using cellulose sulfate/chitosan aerogel: Equilibrium, kinetics, and thermodynamic studies". J. Environ. Manag. 286, 112167; https://doi.org/10.1016/j.jenvman.2021.112167). In the literature, the Radke-Prausnitz model is expressed in different forms, but some of them are incorrect. The first flaw is related to the nonlinear form of the Radke-Prausnitz model. The nonlinear form of this three parameters model is expressed correctly as [Formula: see text] . The units of two parameters are ARP (L/kg) and BRP [(mol/kg)/(mol/L)ß] by considering qe (mol/kg) and Ce (mol/L). The limitation for its exponent is 0≤ ß ≤ 1. This model is developed by two authors (Radke and Prausnitz). The correct paper (DOI: 10.1021/i160044a003) cited as reference of this model is "Radke, C.J., Prausnitz, J.M., 1972. Adsorption of organic solutes from dilute aqueous solution of activated carbon. Ind. Eng. Chem. 11, 445-451". The second is the misconception about the unit of the Langmuir constant (KL; L/mg). The correct unit of KL is litre per milligram of adsorbate (i.e., Pb ions), not litre per milligram of adsorbent (the cellulose sulfate/chitosan aerogel material as reported by Najaflou and co-workers. They proposed a new equation [KL (L/mg) × m/V (mg/L)] to convert the Langmuir constant and then applied it to calculate the thermodynamic parameters of the adsorption process. The m/V is a solid/liquid ratio (g/L or kg/L). However, this conversion and application are mistakes that were thoroughly discussed in this paper. The correction is KEqo=1γAdsorbate×KLLmol×ComolL, with C° (1 mol/L by definition) being the standard state of solute and γAdsorbate (dimensionless) being the activity coefficient of adsorbate in solution. To avoid unexpected mistakes, the present authors suggest that researchers should have a correct citation (citing the original reference instead of using secondary references) and check the consistency of units (i.e., the constants of adsorption models) carefully.


Assuntos
Quitosana , Poluentes Químicos da Água , Humanos , Adsorção , Dinâmica não Linear , Chumbo , Concentração de Íons de Hidrogênio , Cinética , Soluções , Termodinâmica
5.
Environ Res ; 218: 114927, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36460071

RESUMO

This study aimed to develop an extremely highly porous activated carbon derived from soybean curd residues (SCB-AC) through two-step pyrolyzing coupled with KOH activating process and then apply it for removing paracetamol (PRC) and tetracycline (TCH) from water. The optimal conditions for chemical activation were 800 °C and the ratio of KOH to material (4/1; wt./wt.). SCB-AC adsorbents (before and after adsorption) were characterized by Brunauer-Emmet-Teller (BET) analyser, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy, and Raman spectroscopy. Adsorption kinetics, isotherm, and thermodynamics were concluded under batch experiments. The effects of pH (2-10) and NaCl (0-1 M) on adsorption processes were investigated. Reusable properties of laden SCB-AC were evaluated by studying desorption and cycles of adsorption/desorption. Results indicated that SCB-AC exhibited a large specific surface area (3306 m2/g) and high total pore volume (2.307 cm3/g), with mesoporous volume accounting for 86.9%. Its porosity characteristics (average pore width: 2.725 nm) are very appropriate for adsorbing two pharmaceuticals through pore-filling mechanism. Adsorption processes were less affected by the parameters: pH, NaCl, and water matrixes. The kinetics for adsorbing PRC reached a faster equilibrium than that for TCH. The Langmuir maximum adsorption capacity of SCB-AC (pHeq 7.0 and 25 °C) was 1235 mg/g (for adsorbing TCH) and 646 mg/g (PRC). Pore filling (confirmed by BET analyser) and π-π interaction (confirmed by FTIR and Raman spectroscopy) were dominant adsorption mechanisms. Those mechanisms were physisorption (ΔH° = 13.71 and -21.04 kJ/mol for adsorbing TCH and PRC, respectively). SCB-AC can serve as an outstanding material for removing pharmaceuticals from water.


Assuntos
Acetaminofen , Poluentes Químicos da Água , Adsorção , Cloreto de Sódio , Poluentes Químicos da Água/análise , Tetraciclina , Antibacterianos , Termodinâmica , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier , Preparações Farmacêuticas , Concentração de Íons de Hidrogênio
6.
RSC Adv ; 12(10): 5769-5771, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35424562

RESUMO

The study mentioned in the title of this comment paper contains some calculations/results that disagree with some basic chemistry concepts. These misleading calculations include (i) both kinetic and isotherm modelling through linear equations, and (ii) calculating the thermodynamic parameters for the adsorption processes. Thus, we run through the correct way to make these calculations. In our opinion, it is very confusing to continue to disseminate erroneous methods as applied in the original paper.

7.
Chemosphere ; 295: 133370, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34973248

RESUMO

This study developed a layered double hydroxides (Mn/Mg/Fe-LDH) material through a simple co-precipitation method. The Mn/Mg/Fe-LDH oxidized arsenite [As(III)] ions into arsenate [As(V)] anions. The As(III) and oxidized As(V) were then adsorbed onto Mn/Mg/Fe-LDH. The adsorption process of arseniate [As(V)] oxyanions by Mn/Mg/Fe-LDH was simultaneously conducted for comparison. Characterization results indicated that (i) the best Mg/Mn/Fe molar ratio was 1/1/1, (ii) Mn/Mg/Fe-LDH structure was similar to that of hydrotalcite, (iii) Mn/Mg/Fe-LDH possessed a positively charged surface (pHIEP of 10.15) and low Brunauer-Emmett-Teller surface area (SBET = 75.2 m2/g), and (iv) Fe2+/Fe3+ and Mn2+/Mn3+/Mn4+ coexisted in Mn/Mg/Fe-LDH. The As(III) adsorption process by Mn/Mg/Fe-LDH was similar to that of As(V) under different experimental conditions (initial solutions pH, coexisting foreign anions, contact times, initial As concentrations, temperatures, and desorbing agents). The Langmuir maximum adsorption capacity of Mn/Mg/Fe-LDH to As(III) (56.1 mg/g) was higher than that of As(V) (32.2 mg/g) at pH 7.0 and 25 °C. X-ray photoelectron spectroscopy was applied to identify the oxidation states of As in laden Mn/Mg/Fe-LDH. The key removal mechanism of As(III) by Mn/Mg/Fe-LDH was oxidation-coupled adsorption, and that of As(V) was reduction-coupled adsorption. The As(V) mechanism adsorption mainly involved: (1) the inner-sphere and outer-sphere complexation with OH groups of Mn/Mg/Fe-LDH and (2) anion exchange with host anions (NO3-) in its interlayer. The primary mechanism adsorption of As(III) was the inner-sphere complexation. The redox reactions made Mn/Mg/Fe-LDH lose its original layer structure after adsorbing As(V) or As(III). The adsorption process was highly irreversible. Mn/Mg/Fe-LDH can decontaminate As from real groundwater samples from 45-92 ppb to 0.35-7.9 ppb (using 1.0 g/L). Therefore, Mn/Mg/Fe-LDH has great potential as a material for removing As.


Assuntos
Arsenitos , Poluentes Químicos da Água , Adsorção , Concentração de Íons de Hidrogênio , Hidróxidos/química , Oxirredução , Água , Poluentes Químicos da Água/química
8.
Korean J Chem Eng ; : 1-10, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35095157

RESUMO

This study developed a new α-Fe2O3 (hematite) nanoparticles-loaded spherical biochar (H-SB) through the direct pyrolysis of glucose-derived spherical hydrochar and FeCl3. The optimal impregnation ratio (hydrochar and FeCl3) was 1/1.25 (wt/wt). H-SB was applied to remove paracetamol (PRC) from water. Results indicated that H-SB exhibited a relatively low surface area (127 m2/g) and total pore volume (0.089 cm3/g). The presence of iron particles in its surface was confirmed by scanning electron microscopy with energy dispersive spectroscopy. The dominant form of iron nanoparticles (α-Fe2O3) in its surface was confirmed by X-ray powder diffraction and Raman spectrum. The crystallite size of α-Fe2O3 in H-SB was 27.4 nm. The saturation magnetization of H-SB was 6.729 cmu/g. The analysis of Fourier-transform infrared spectroscopy demonstrated that the C-O and O-H groups were mainly responsible for loading α-Fe2O3 nanoparticles in its surface. The adsorption study indicated the amount of PRC adsorbed by H-SB slightly decreased within solution pH from 2 to 11. The adsorption reached a fast saturation after 120 min. The Langmuir maximum adsorption capacity of H-SB was 49.9 mg/g at 25 °C and pH 7.0. Ion-dipole interaction and π-π interaction played an important role in adsorption mechanisms, while hydrogen bonding and pore filling were minor. Therefore, H-SB can serve as a promising material for treating PRC-contaminated water streams. ELECTRONIC SUPPLEMENTARY MATERIAL: Supplementary material is available in the online version of this article at 10.1007/s11814-021-1013-z.

9.
Environ Res ; 193: 110265, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33011225

RESUMO

The presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in water and wastewater has recently been reported. According to the updated literature, the stools and masks of the patients diagnosed with coronavirus disease (COVID-19) were considered as the primary route of coronavirus transmission into water and wastewater. Most coronavirus types which attack human (possible for SARS-CoV-2) are often inactivated rapidly in water (i.e., the survival of human coronavirus 229E in water being 7 day at 23 °C). However, the survival period of coronavirus in water environments strongly depends on temperature, property of water, concentration of suspended solids and organic matter, solution pH, and dose of disinfectant used. The World Health Organization has stated that the current disinfection process of drinking water could effectively inactivate most of the bacterial and viral communities present in water, especially SARS-CoV-2 (more sensitive to disinfectant like free chlorine). A recent study confirmed that SARS-CoV-2 RNA was detected in inflow wastewater (but not detected in outflow one). Although the existence of SARS-CoV-2 in water influents has been confirmed, an important question is whether it can survive or infect after the disinfection process of drinking water. To date, only one study confirmed that the infectivity of SARS-CoV-2 in water for people was null based on the absence of cytopathic effect (CPE) in infectivity tests. Therefore, further studies should focus on the survival of SARS-CoV-2 in water and wastewater under different operational conditions (i.e., temperature and water matrix) and whether the transmission from COVID-19-contaminated water to human is an emerging concern. Although paper-based devices have been suggested for detecting the traces of SARS-CoV-2 in water, the protocols and appropriate devices should be developed soon. Wastewater and sewage workers should follow the procedures for safety precaution against SARS-CoV-2 exposure.


Assuntos
COVID-19 , Coronavirus , Humanos , RNA Viral , SARS-CoV-2 , Águas Residuárias , Água
11.
Water Sci Technol ; 82(5): 984-997, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33031075

RESUMO

The research aimed to develop a novel mesoporous aluminosilicate/zeolite composite by the template co-precipitation method. The effect of aluminosilicate (AlSi) and zeolite (NaY) on the basic properties and adsorption capacity of the resultant composite was conducted at different mass ratios of AlSi/NaY (i.e., 5/90, 10/80, 15/85, 20/80, and 50/50). The adsorption characteristics of such composite and its feedstock materials (i.e., aluminosilicates and zeolite) towards radioactive Sr2+ ions and toxic metals (Cu2+ and Pb2+ ions) in aqueous solutions were investigated. Results indicated that BET surface area (SBET), total pore volume (VTotal), and mesopore volume (VMeso) of prepared materials followed the decreasing order: aluminosilicate (890 m2/g, 0.680 cm3/g, and 0.644 cm3/g) > zeolite (623 m2/g, 0.352 cm3/g, and 0.111 cm3/g) > AlSi/NaY (20/80) composite (370 m2/g, 0.254 cm3/g, and 0.154 cm3/g, respectively). The Langmuir maximum adsorption capacity (Qm) of metal ions (Sr2+, Cu2+, and Pb2+) in single-component solution was 260 mg/g, 220 mg/g, and 161 mg/g (for zeolite), 153 mg/g, 37.9 mg/g, and 66.5 mg/g (for aluminosilicate), and 186 mg/g, 140 mg/g, and 77.8 mg/g for (AlSi/NaY (20/80) composite), respectively. Ion exchange was regarded as a domain adsorption mechanism of metal ions in solution by zeolite; meanwhile, inner-surface complexation was domain one for aluminosilicate. Ion exchange and inner-surface complexation might be mainly responsible for adsorbing metal ions onto the AlSi/NaY composite. Pore-filling mechanism was a less important contributor during the adsorption process. The results of competitive adsorption under binary-components (Cu2+ and Sr2+) and ternary-components (Cu2+, Pb2+, and Sr2) demonstrated that the removal efficacy of target metals by the aluminosilicate, zeolite, and their composite remarkably decreased. The synthesized AlSi/NaY composite might serve as a promising adsorbent for real water treatment.


Assuntos
Zeolitas , Silicatos de Alumínio , Íons , Chumbo
12.
Sci Total Environ ; 746: 139854, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32646622

RESUMO

This paper primarily aimed to provide some concerns and continue discussion about the previous published paper in this journal. First, when the mechanism of Cr(VI) removal from solution involved in adsorption-coupled reduction was proposed, the X-ray photoelectron spectroscopy (XPS) of Cr 2p spectrum of laden adsorbent (i.e., DDTC-LDH after adsorption) needs to demonstrate the co-existence of Cr(VI) and Cr(III). The detection of reduced Cr(III) in solution after the completed adsorption of Cr(VI) only provides information on the mechanism regarding reduction, not adsorption-coupled reduction. Second, adsorption mechanism (chemisorption or physisorption) cannot be drawn only based on the best statistical fit between the time-dependent data of adsorption experiment and the kinetic model (i.e., the pseudo-second-order, Elovich, or Avrami model). Third, the constant KRP (liters per grams of adsorbent not adsorbate; L/g) of the Redlich-Peterson isotherm model is not equal to or used as the thermodynamic equilibrium constant KEqo. The application of the constant KRP for calculating the thermodynamic parameters of adsorption process (∆G°, ∆H°, and ∆G°) using the van't Hoff equation leads to a certain error in the values (sign and magnitude) of those parameters. Fourth, the pHPZC of adsorbent is significant different to its pHIEP on both meanings and analysis methods. The use of those terminologies in the fields of material and sorption (adsorption and absorption) must be correct. Finally, some important information needs to provide in the studies of adsorption isotherm and mechanism (i.e., solution pH) and characteristics of diethyldithiocarbamate intercalated-LDH (i.e., arrangement and orientation of diethyldithiocarbamate in the interlayer region of DDTC-LDH).

13.
J Hazard Mater ; 398: 122903, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-32512448

RESUMO

The present research describes the synthesis of new nanomagnetic activated carbon material with high magnetization, and high surface area prepared in a single pyrolysis step that is used for the carbonization, activation, and magnetization of the produced material. The pyrolysis step of tucumã seed was carried out in a conventional tubular oven at 600 °C under N2-flow. It was prepared three magnetic carbons MT-1.5, MT-2.0, MT-2.5, that corresponds to the proportion of biomass: ZnCl2 always 1:1 and varying the proportion of NiCl2 of 1.5, 2.0, and 2.5, respectively. These magnetic nanocomposites were characterized by Vibrating Sample Magnetometer (VSM), X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, hydrophobic/hydrophilic balance, CHN/O elemental analysis, modified Boehm titration, N2 adsorption-desorption isotherms; and pHpzc. All the materials obtained presented Ni particles with an average crystallite size of less than 33 nm. The MT-2.0 was employed for the removal of nicotinamide and propranolol from aqueous solutions. Based on Liu isotherm, the Qmax was 199.3 and 335.4 mg g-1 for nicotinamide and propranolol, respectively. MT-2.0 was used to treat simulated pharmaceutical industry effluents attaining removal of all organic compounds attaining up to 99.1 % of removal.


Assuntos
Carvão Vegetal , Poluentes Químicos da Água , Adsorção , Cloretos , Fenômenos Magnéticos , Niacinamida , Níquel , Propranolol , Pirólise , Poluentes Químicos da Água/análise , Zinco
15.
J Hazard Mater ; 394: 122255, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32251903

RESUMO

In this study, we developed an innovative spherical biochar with high porosity and excellent paracetamol (PRC) adsorption capacity. The optimal pyrolysis temperatures for the preparation of spherical biochar (derived from pure glucose) and non-spherical biochar (from pomelo peel wastes) were obtained at 900 °C and 700 °C, respectively. Various advanced techniques were applied to characterize the prepared biochars. Spherical and non-spherical biochars exhibited large specific surface area (1292 and 1033 m2/g) and high total pore volume (0.704 and 1.074 cm3/g), respectively. The adsorption behavior of PRC onto two biochars was conducted utilizing batch experiments. Results demonstrated that the adsorption process was slightly affected by the change of solution pH (2-11) and addition of NaCl (0.05-1.0 M) and was able to achieve fast equilibrium (∼120 min). The maximum adsorption capacity of spherical biochar (286 mg/g) for PRC was approximately double that of non-spherical biochar (147 mg/g). The signal of thermodynamic parameters was negative ΔG° and ΔH° values, but positive ΔS° value. The adsorption mechanism consisted of pore-filling, hydrogen bonding formations, n-π and π-π interactions, and van der Waals force. The adsorption capacities of two biochars were insignificantly dependent on different real water samples containing PRC. Consequently, the biochars can serve as a green and promising material for efficiently removing PRC from water.


Assuntos
Acetaminofen/isolamento & purificação , Carvão Vegetal/química , Poluentes Químicos da Água/isolamento & purificação , Água/química , Acetaminofen/química , Adsorção , Carvão Vegetal/síntese química , Concentração de Íons de Hidrogênio , Cinética , Concentração Osmolar , Termodinâmica , Poluentes Químicos da Água/química , Purificação da Água/métodos
16.
Sci Total Environ ; 726: 137828, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32320866

RESUMO

The ubiquitous appearance of nonsteroidal anti-inflammatory drugs (i.e., naproxen) in water bodies has raised enormous concerns among general public. Development of promising materials for eliminating such contaminants from water environment has attracted much attention in the scientific community. In this study, three (direct, post-treated and pre-treated) methods were developed to prepare biochars (800-PSB, 800-800-PSB, and 190-800-PSB, respectively) derived from the wastes of peanut shells (PS). They were thoroughly characterized by various important properties (i.e., porosity and superficial functional group) and applied to remove naproxen drug from water. Results indicated that although the pre- and post-treatments had a slight effect on the surface area of biochars (i.e., 571 m2/g for 800-PSB, 596 m2/g for 800-800-PSB, and 496 m2/g for 190-800-PSB), such treatments remarkably improved the adsorption capacity of biochar. The maximum adsorption capacity of biochar (obtained from the Langmuir model) towards naproxen in solution at 25 decreased in the following order: 800-800-PSB (324 mg/g) > 190-800-PSB (215 mg/g) > 800-PSB (105 mg/g). The thermodynamic study demonstrated that the adsorption was spontaneous and exothermic. Depending the preparation process, the contribution of each mechanism in the adsorption process was dissimilar. The overall adsorption mechanism was regarded as pore filling, π-π interaction, hydrogen bonding formations, n-π interaction, van der Waals force, and electrostatic attraction. Two methods used to identify the important role of π-π interaction were proposed herein. The possible desorption and reuse of laden-biochars were investigated by the chemical and thermal methods. The prepared biochar samples can serve as potential carbonaceous porous adsorbents for effectively removing naproxen from water media.


Assuntos
Naproxeno , Poluentes Químicos da Água , Adsorção , Arachis , Carvão Vegetal , Água
17.
Environ Res ; 185: 109436, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32278154

RESUMO

An alarming number of contaminants of emerging concern, including active residues from pharmaceuticals and personal care products (PPCPs), are increasingly being introduced in water systems and environmental matrices due to unavoidable outcomes of modern-day lifestyle. Most of the PPCPs based contaminants are not completely eliminated during the currently used water/wastewater treatment processes. Therefore, highly selective and significant removal of PPCPs from environmental matrices remains a scientific challenge. In recent years, a wide range of metal-organic frameworks (MOFs) and MOF-based nanocomposites have been designed and envisioned for environmental remediation applications. MOF-derived novel cues had shown an adsorptive capability for the extraction and removal of an array of trace constituents in environmental samples. Noteworthy features such as substantial surface area, size, dispersibility, tunable structure, and repeated use capability provide MOFs-derived platform a superiority over in-practice conventional adsorptive materials. This review provides a comprehensive evaluation of the efficient removal or mitigation of various categories of PPCPs by diverse types of MOF-derived adsorbents with suitable examples. The growing research investigations in this direction paves the way for designing more efficient porous nanomaterials that would be useful for the elimination of PPCPs, and separation perspectives.


Assuntos
Estruturas Metalorgânicas , Preparações Farmacêuticas , Purificação da Água , Adsorção , Águas Residuárias
18.
Food Chem ; 322: 126757, 2020 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-32283378

RESUMO

In the present work, for the first time, the filamentous fungus Fusarium sp. was utilized for devising a novel method for pre-concentration and determination of trace amounts of Pb(II), Cu(II), Cd(II), and Zn(II) ions, using a mini-column packed with Fusarium-coated multi-walled carbon nanotubes and inductively coupled plasma-optical emission spectrometry. Optimal analytical conditions including pH, ionic strength, elution solution, sample and eluent flow rates, and sample volume were determined. The detection limits were 0.39, 0.060, 0.021, and 0.025 ng mL-1 for Pb(II), Cu(II), Cd(II), and Zn(II) cations, respectively. This new method demonstrated a high performance for the analytes, and their adsorption was not affected by the different co-existing ions. The present procedure was validated by the analysis of standard reference materials, since the obtained data were in close agreement with reference values. Finally, this new procedure was successfully applied to analysis of heavy metal cations in natural food and water samples.


Assuntos
Fusarium/química , Metais Pesados/análise , Nanotubos de Carbono/química , Extração em Fase Sólida , Espectrofotometria/métodos , Adsorção , Cátions/química , Células Imobilizadas/química , Cobre/análise , Água Doce/análise , Concentração de Íons de Hidrogênio , Chumbo/análise , Chumbo/isolamento & purificação , Limite de Detecção , Metais Pesados/isolamento & purificação , Metais Pesados/normas , Concentração Osmolar , Padrões de Referência , Espectrofotometria/normas
19.
Chemosphere ; 257: 126444, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32241559

RESUMO

This paper provided further discussion on some identified mistakes and inconsistencies. Such problems included (1) the determination and discussion on the pHPZC value of the biochar, (2) the excellent adsorption capacity of the biochar toward the dye contaminant, (3) the proposd adsorption mechanism (i.e., chemical adsorption) only based on the best fitting of the experimental data to the kinetic model (i.e., the pseudo-second-order or Elovich model), (4) the conception on the Freundlich model, and (5) the presentation of the adsorption mechanism involved in hydrogen bonding. Some other potential problems regarding the determination of adsorption capacity of an adsorbent towards an adsorbate (qe; mg/g) were additionally discussed herein. It gives readers a gentle reminder that the initial concentration of adsorbate (also known as the blank sample; Co) always plays a vital role in accurately calculating the qe value. The Co value from experiment (i.e., 254 mg/L or 245 mg/L) is often dissimilar to the Co value from theory (i.e., 250 mg/L). The difference becomes enormously significant when the Co value reaches very high concentration (i.e., 1000 mg/L) because an extremely high dilution factor is applied to determine the concentration of adsorbate in solution. The author hopes that the comments and contents in this paper will be particularly helpful for other researchers who are interested in the field of adsorption science and technology. Some highly-readable recent publications, which comprise the different types of paper as "comment", "discussion", "perspective", and "critical review", have also introduced in this paper. The expert reviewers and editors should give a great concern to such problems for further evaluations of submitted manuscripts in the field.


Assuntos
Litchi , Poluentes Químicos da Água , Adsorção , Carvão Vegetal , Corantes , Cinética , Águas Residuárias
20.
Sci Total Environ ; 717: 137091, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32084681

RESUMO

This study developed a green and novel magnetic biochar via the co-pyrolysis of firwood biomass pre-treated with 10% (w/w) of either solid-phase (admixing; G10BCA) or liquid-phase (impregnation; G10BCI) goethite mineral (α-FeOOH). Newly fabricated magnetic biochars were characterized by inductively coupled plasma-optical emission spectroscopy (ICP-OES), Brunauer-Emmett-Teller (BET) equipment, X-ray powder diffractometry (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), proximate and elemental analyzer, and vibrating sample magnetometry. The effects of magnetic precursor, iron loading, and aqua-treatments on recoverability, magnetic property, and stability (resistance to α-FeOOH reconstructive crystallization/dissolution reactions) were explored and compared to those of magnetic biochar derived from conventional ferric chloride precursor (F10BCI). Results confirmed a direct correlation between biochar yields and ash contents with iron loading, irrespective of the used types of magnetic precursors (α-FeOOH or FeCl3). Although FeCl3 can generate magnetic biochar (F10BCI) with higher total carbon content (83.6%) and surface area (299 m2/g), α-FeOOH proved to be more effective at yielding magnetic biochars with nanostructured surfaces, lower water extractable components (thus green; G10BCA = 0.21 mg/mL and G10BCI = 0.16 mg/mL), higher magnetic saturation (G10BCA = 10.0 emu/g and G10BCI = 20.8 emu/g), higher ferromagnetic susceptibility, and excellent recoverability. α-FeOOH was undetected on the surface of G10BCA, post-aqua-treatments (over 30 days), and this demonstrated its stability in the face of demagnetization via α-FeOOH reformation reactions. Consequently, this study demonstrated that the admixing solid-phase α-FeOOH (10%) with firwood biomass offered a green, facile, and efficient way to thermochemically produce magnetic biochar. The produced biochar exhibited a superb stability to α-FeOOH reconstructive crystallization/dissolution reactions in aquatic (aqua) media, green attributes, good magnetic properties, and great potential applications in many areas of the economy.


Assuntos
Nanopartículas Metálicas , Carvão Vegetal , Compostos de Ferro , Fenômenos Magnéticos , Minerais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...